Protein thermal stability, hydrogen bonds, and ion pairs.
نویسندگان
چکیده
Researchers in both academia and industry have expressed strong interest in comprehending the mechanisms responsible for enhancing the thermostability of proteins. Many and different structural principles have been postulated for the increased stability. Here, 16 families of proteins with different thermal stability were theoretically examined by comparing their respective fractional polar atom surface areas and the number and type of hydrogen bonds and salt links between explicit protein atoms. In over 80% of the families, correlations were found between the thermostability of the familial members and an increase in the number of hydrogen bonds as well as an increase in the fractional polar surface which results in added hydrogen bonding density to water. Thus increased hydrogen bonding may provide the most general explanation for thermal stability in proteins. The number of ion pairs was also found to increase with thermal stability in two-thirds of the families tested; however, their rate of addition was only about one-sixth that for internal hydrogen bonds amongst the protein atoms. The preferred residue exchanges and surface atom types useful in engineering enhanced stability were also examined.
منابع مشابه
Hydrophobic environment is a key factor for the stability of thermophilic proteins.
The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by co...
متن کاملInterfacial Hydrogen Bonds and Their Influence Mechanism on Increasing the Thermal Stability of Nano-SiO2-Modified Meta-Aramid Fibres
For further analysis of the effect of nano-doping on the properties of high polymers and research into the mechanism behind modified interfacial hydrogen bonds, a study on the formation probability of nano-SiO2/meta-aramid fibre interfacial hydrogen bonds and the strengthening mechanism behind interfacial hydrogen bonds on the thermal stability of meta-aramid fibres using molecular dynamics is ...
متن کاملStructural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey.
BACKGROUND Proteins from thermophilic organisms usually show high intrinsic thermal stability but have structures that are very similar to their mesophilic homologues. From prevous studies it is difficult to draw general conclusions about the structural features underlying the increased thermal stability of thermophilic proteins. RESULTS In order to reveal the general evolutionary strategy fo...
متن کاملAn Overview of the Protein Thermostability Prediction: Databases and Tools
Environmental temperature plays an important role in the cell life [1]. There are four classes of organism in relation to their optimal growth temperature namely hyperthermophile (>80◦C), thermophile (45-80◦C), mesophile (20-45◦C) and psychrophile (<20◦C) [2]. Thermal stability is defined as the ability of material to resist changes in physical structure or chemical irreversibility, or spatial ...
متن کاملInvestigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study
In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 269 4 شماره
صفحات -
تاریخ انتشار 1997